960. Stone Game Solitaire

There are n distinct piles of stones, each of size n1. Starting with an initial score of 0, the following procedure is repeated:

If all piles are eventually emptied, the current score is confirmed as final. However, if one gets "stuck" and cannot empty all piles, the current score is discarded, resulting in a final score of 0.

Three example sequences of turns are illustrated below for n=4, with each tuple representing pile sizes as one proceeds, and with additions to the score indicated above the arrows.

(3,3,3,3)+1(0,3,2,3)+1(0,3,1,0)+1(0,0,0,0):final score =3(3,3,3,3)+1(3,0,3,2)+2(1,0,3,0)+1(0,0,0,0):final score =4(3,3,3,3)+2(1,3,1,3)+1(1,2,1,0)stuck!:final score =0

Define F(n) to be the sum of the final scores achieved for every sequence of turns which successfully empty all piles.

You are given F(3)=12, F(4)=360, and F(8)=16785941760.

Find F(100). Give your answer modulo 109+7.

960. 单人取石子游戏

现有 n 个互异、各含有 n1 枚石子的石堆。初始时,你的得分是 0,随后你须重复如下过程:

若你最终取走了所有石子,那么你的最终得分就是先前所有轮得分的总和。然而,如果你在某一轮中无法取走石子,且仍有石子剩余时,则本次游戏作废,你的最终得分是 0

如下是 n=4 时的三种可能的游戏过程,我们用四元组代表当前各堆剩余的石子数,并在箭头上方标明该轮得分:

(3,3,3,3)+1(0,3,2,3)+1(0,3,1,0)+1(0,0,0,0):最终得分 =3(3,3,3,3)+1(3,0,3,2)+2(1,0,3,0)+1(0,0,0,0):最终得分 =4(3,3,3,3)+2(1,3,1,3)+1(1,2,1,0)无法操作!:最终得分 =0

F(n) 为:所有能够取走所有石子的操作序列的最终得分的和。已知:F(3)=12F(4)=360F(8)=16785941760

F(100)(109+7) 的值。


这个链接 回到源站。

这个链接 回到详细版题目目录。