956. Super Duper Sum

The total number of prime factors of n, counted with multiplicity, is denoted Ω(n).
For example, Ω(12)=3, counting the factor 2 twice, and the factor 3 once.

Define D(n,m) to be the sum of all divisors d of n where Ω(d) is divisible by m.
For example, D(24,3)=1+8+12=21.

The superfactorial of n, often written as n$, is defined as the product of the first n factorials:

n$=1!×2!××n!

The superduperfactorial of n, we write as n, is defined as the product of the first n superfactorials:

n=1$×2$××n$

You are given D(6,6)=6368195719791280.

Find D(1000,1000). Give your answer modulo 999999001.

956. 超酷阶乘的求和

Ω(n)n 的质因子的数量(重复质因数计多次)。例如,因为 12=22×3,所以 Ω(12)=3

D(n,m) 为:所有满足 d 能整除 nm 能整除 Ω(d) 的整数 d 的和。例如:D(24,3)=1+8+12=21

我们将前 n 个阶乘之积称作 n超阶乘,记作 n$

n$=1!×2!××n!

我们将前 n 个超阶乘之积称作 n超酷阶乘,记作 n

n=1$×2$××n$

已知 D(6,6)=6368195719791280

D(1000,1000)999999001 的值。


这个链接 回到源站。

这个链接 回到详细版题目目录。