937. Equiproduct Partition

Let θ=2.

Define T to be the set of numbers of the form a+bθ, where a and b are integers and either a>0, or a=0 and b>0. For a set ST and element zT, define p(S,z) to be the number of ways of choosing two distinct elements from S with product either z or z.

For example if S={1,2,4} and z=4, there is only one valid pair of elements with product ±4, namely 1 and 4. Thus, in this case p(S,z)=1.

For another example, if S={1,θ,1+θ,2θ} and z=2θ, we have 1(2θ)=z and θ(1+θ)=z, giving p(S,z)=2.

Let A and B be two sets satisfying the following conditions:

Remarkably, these four conditions uniquely determine the sets A and B.

Let Fn be the set of the first n factorials: Fn={1!,2!,,n!}, and define G(n) to be the sum of all elements of FnA.

You are given G(4)=25, G(7)=745, and G(100)709772949(mod109+7).

Find G(108) and give your answer modulo 109+7.

937. 等乘积分拆

θ=2,记 T 为形如 a+bθ 的数的集合,其中整数 a,b 需满足如下两个条件之一:

对诸 STzT,令 p(S,z) 为:从 S 中任取两个不同的、乘积为 zz 的元素的方案数。举个例子:若取 S={1,2,4}z=4,惟一满足要求的取法是取出 14。于是 p(S,z)=1。再比如,取 S={1,θ,1+θ,2θ}z=2θ,则有两种合法的取法:1(2θ)=zθ(1+θ)=z,于是 p(S,z)=2

AB 为满足如下条件的两个集合。

值得一提的是,这四个条件能够唯一确定集合 AB

Fnn 个阶乘数组成的集合,即 Fn={1!,2!,,n!}。再记 G(n)FnA 中全体元素的和。已知:G(4)=25G(7)=745G(100)709772949(mod109+7)

G(108)(109+7) 的值。


这个链接 回到源站。

这个链接 回到详细版题目目录。