930. The Gathering

Given n2 bowls arranged in a circle, m2 balls are distributed amongst them.

Initially the balls are distributed randomly: for each ball, a bowl is chosen equiprobably and independently of the other balls. After this is done, we start the following process:

This process stops when all the m balls are located in the same bowl. Note that this may be after zero steps, if the balls happen to have been initially distributed all in the same bowl.

Let F(n,m) be the expected number of times we move a ball before the process stops. For example, F(2,2)=12, F(3,2)=43, F(2,3)=94, and F(4,5)=687524.

Let G(N,M)=n=2Nm=2MF(n,m). For example, G(3,3)=13712 and G(4,5)=627712. You are also given that G(6,6)1.681521567954e4 in scientific format with 12 significant digits after the decimal point.

Find G(12,12). Give your answer in scientific format with 12 significant digits after the decimal point.

930. 小球集聚

现有 n2 只碗排成一圈,有 m2 个球等待被放入碗中。

初始时,我们将为每个球等概率地选择一个碗,并将其放入该碗,选碗过程对于每个球相互独立。之后开始执行如下过程:

m 个球都在同一个碗中,则此过程停止。如果一开始这 m 个球就在同一个碗中,那么该过程无需进行,移球次数为 0

F(n,m) 为过程停止时,移动球次数的期望值。已知:F(2,2)=12F(3,2)=43F(2,3)=94F(4,5)=687524

再令 G(N,M)=n=2Nm=2MF(n,m)。已知 G(3,3)=13712G(4,5)=627712。且 G(6,6) 用科学记数法表示,并在小数点后保留 12 位有效数字的结果为 1.681521567954e4

G(12,12)。将你的答案用科学记数法表示,并在小数点后保留 12 位有效数字。


这个链接 回到源站。

这个链接 回到详细版题目目录。