A Young diagram is a finite collection of (equally-sized) squares in a grid-like arrangement of rows and columns, such that
the left-most squares of all rows are aligned vertically;
the top squares of all columns are aligned horizontally;
the rows are non-increasing in size as we move top to bottom;
the columns are non-increasing in size as we move left to right.
Two examples of Young diagrams are shown below.
Two players Right and Down play a game on several Young diagrams, all disconnected from each other. Initially, a token is placed in the top-left square of each diagram. Then they take alternating turns, starting with Right. On Right's turn, Right selects a token on one diagram and moves it one square to the right. On Down's turn, Down selects a token on one diagram and moves it one square downwards. A player unable to make a legal move on their turn loses the game.
For
Additionally, define the weight of an
Let
For example,
You are also given
Find
所谓 杨氏图表(杨图),指的是由有限个(完全相同的)正方形按网格状排列,形成若干行和列,并满足如下要求的图形:
各横行的最左侧对齐。
各竖列的最上方对齐。
每一行所含的正方形数从上至下不增。
每一列所含的正方形数从左至右不增。
如下是两个杨图:
两位玩家,小右和小下,正在若干个彼此不交的杨图上玩游戏。一开始,它们在每个杨图的左上角的格子上放置一枚代币。随后,由小右执先手,二人轮流进行操作。如果轮到小右操作,他可以选择一枚代币,把它在所在的杨图上向右移动 一格。如果轮到小下操作,他可以选择一枚代币,把它在所在的杨图上向下移动 一格。无法进行合法操作的玩家输掉游戏。
对正整数
另外,我们定义一个
我们记
已知
已知
求
点 这个链接 回到源站。
点 这个链接 回到详细版题目目录。