923. Young's Game B

A Young diagram is a finite collection of (equally-sized) squares in a grid-like arrangement of rows and columns, such that

Two examples of Young diagrams are shown below.

Two players Right and Down play a game on several Young diagrams, all disconnected from each other. Initially, a token is placed in the top-left square of each diagram. Then they take alternating turns, starting with Right. On Right's turn, Right selects a token on one diagram and moves it one square to the right. On Down's turn, Down selects a token on one diagram and moves it one square downwards. A player unable to make a legal move on their turn loses the game.

For a,b,k1 we define an (a,b,k)-staircase to be the Young diagram where the bottom-right frontier consists of k steps of vertical height a and horizontal length b. Shown below are four examples of staircases with (a,b,k) respectively (1,1,4), (5,1,1), (3,3,2), (2,4,3).

Additionally, define the weight of an (a,b,k)-staircase to be a+b+k.

Let S(m,w) be the number ways of choosing m staircases, each having weight not exceeding w, upon which Right (moving first in the game) will win the game assuming optimal play. Different orderings of the same set of staircases are to be counted separately.

For example, S(2,4)=7 is illustrated below, with tokens as grey circles drawn in their initial positions.

You are also given S(3,9)=315319.

Find S(8,64) giving your answer modulo 109+7.

923. 杨氏游戏 B

所谓 杨氏图表(杨图),指的是由有限个(完全相同的)正方形按网格状排列,形成若干行和列,并满足如下要求的图形:

如下是两个杨图:

两位玩家,小右和小下,正在若干个彼此不交的杨图上玩游戏。一开始,它们在每个杨图的左上角的格子上放置一枚代币。随后,由小右执先手,二人轮流进行操作。如果轮到小右操作,他可以选择一枚代币,把它在所在的杨图上向右移动 一格。如果轮到小下操作,他可以选择一枚代币,把它在所在的杨图上向下移动 一格。无法进行合法操作的玩家输掉游戏。

对正整数 a,b,k1,定义一个 (a,b,k)-阶梯 为满足如下条件的杨图:该杨图各行最右侧、各列最下方的格子位于右下方的两条边组成的边界构成了一个 k台阶,每级台阶的高是 a、长是 b。下图是四个阶梯的例子,其 (a,b,k) 值分别是 (1,1,4)(5,1,1)(3,3,2)(2,4,3)

另外,我们定义一个 (a,b,k)-阶梯的 权重a+b+k

我们记 S(m,w) 为:小右、小下选择 m 个权重 w 的阶梯进行游戏,二人都以最优策略操作,最终小右获胜的情况下,选择阶梯的方案数。相同阶梯组成的不同排列分别计数。

已知 S(2,4)=7,七种方案见下图,其中灰色圆圈表示处于初始位置的代币:

已知 S(3,9)=315319

S(8,64)(109+7) 的值。


这个链接 回到源站。

这个链接 回到详细版题目目录。