920. Tau Numbers

For a positive integer n we define τ(n) to be the count of the divisors of n. For example, the divisors of 12 are {1,2,3,4,6,12} and so τ(12)=6.

A positive integer n is a tau number if it is divisible by τ(n). For example τ(12)=6 and 6 divides 12 so 12 is a tau number.

Let m(k) be the smallest tau number x such that τ(x)=k. For example, m(8)=24, m(12)=60 and m(16)=384.

Further define M(n) to be the sum of all m(k) whose values do not exceed 10n. You are given M(3)=3189.

Find M(16).

920. τ

对正整数 n,我们记 τ(n)n 的正约数的个数。例如 12 的所有因数是 {1,2,3,4,6,12},于是 τ(12)=6

若正整数 n 满足 τ(n) 整除 n,则称 n 是一个 τ-数。例如,τ(12)=6 整除 12,所以 12 是一个 τ 数。

m(k) 为最小的,满足 τ(x)=kτ-数 x。已知 m(8)=24m(12)=60m(16)=384

再记 M(n)=k=110nm(k),已知 M(3)=3189

M(16)


这个链接 回到源站。

这个链接 回到详细版题目目录。