919. Fortunate Triangles

We call a triangle fortunate if it has integral sides and at least one of its vertices has the property that the distance from it to the triangle's orthocentre is exactly half the distance from the same vertex to the triangle's circumcentre.

Triangle ABC above is an example of a fortunate triangle with sides (6,7,8). The distance from the vertex C to the circumcentre O is 4.131182, while the distance from C to the orthocentre H is half that, at 2.065591.

Define S(P) to be the sum of a+b+c over all fortunate triangles with sides abc and perimeter not exceeding P.

For example S(10)=24, arising from three triangles with sides (1,2,2), (2,3,4), and (2,4,4). You are also given S(100)=3331.

Find S(107).

919. 幸运三角形

若一个三角形满足如下要求,则称其是 幸运的

上图中的三角形 ABC 就是一个幸运三角形:其三条边的长度分别是 6,7,8;顶点 C 到外心 O 的距离约为 4.131182,恰是 C 到垂心 H 的距离(约为 2.065591)的两倍。

S(P) 为:对所有周长 P,三边长分别为 abc 的幸运三角形,a+b+c 的和。已知 S(10)=24,因为三边长是 (1,2,2)(2,3,4)(2,4,4) 的三角形都是幸运的。你还知道 S(100)=3331

S(107)


这个链接 回到源站。

这个链接 回到详细版题目目录。