911. Khinchin Exceptions

An irrational number x can be uniquely expressed as a continued fraction [a0;a1,a2,a3,]:

x=a0+1a1+1a2+1a3+

where a0 is an integer and a1,a2,a3, are positive integers.

Define kj(x) to be the geometric mean of a1,a2,,aj.
That is, kj(x)=(a1a2aj)1/j.
Also define k(x)=limjkj(x).

Khinchin proved that almost all irrational numbers x have the same value of k(x)2.685452 known as Khinchin's constant. However, there are some exceptions to this rule.

For n0 define

ρn=i=02n22i

For example ρ2, with continued fraction beginning [3;3,1,3,4,3,1,3,], has k(ρ2)2.059767.

Find the geometric mean of k(ρn) for 0n50, giving your answer rounded to six digits after the decimal point.

911. 辛钦例外

一个无理数恰有惟一的连分数表示 [a0;a1,a2,a3,],其中 a0 是整数、而 a1,a2,a3, 均是正整数:

x=a0+1a1+1a2+1a3+

kj(x)a1,a2,,aj几何平均数。亦即,kj(x)=(a1a2aj)1/j。再记 k(x)=limjkj(x)

前苏联数学家辛钦证明了,对 几乎所有 无理数 xk(x) 均等于 辛钦常数 2.685452。不过有一些数不符合这个规律。

对整数 n0 定义:

ρn=i=02n22i

例如 ρ2 的连分数表示是 [3;3,1,3,4,3,1,3,],对应的 k(ρ2)2.059767

0n50 时,全体 k(ρn) 的几何平均数。将你的答案四舍五入至小数点后第 6 位。


这个链接 回到源站。

这个链接 回到详细版题目目录。