Claire Voyant is a teacher playing a game with a class of students.
A fair coin is tossed on the table. All the students can see the outcome of the toss, but Claire cannot.
Each student then tells Claire whether the outcome is head or tail. The students may lie, but Claire knows the probability that each individual student lies. Moreover, the students lie independently.
After that, Claire attempts to guess the outcome using an optimal strategy.
For example, for a class of four students with lying probabilities
Find the probability that Claire guesses correctly for a class of 51 students each lying with a probability of
Give your answer rounded to 10 digits after the decimal point.
克莱尔·瓦扬老师正和全班同学玩一个游戏。桌上有一枚抛掷过的公平硬币,所有学生都能看到抛掷的结果,但克莱尔·瓦扬不能。随后,每个学生都会告诉克莱尔·瓦扬抛掷的结果。学生们可能说谎,但是克莱尔·瓦扬知道每个学生说谎的概率,而且学生是否说谎是相互独立的。随后,克莱尔·瓦扬使用最佳策略猜测这枚硬币的正反。
例如,若全班共有
若全班有
点 这个链接 回到源站。
点 这个链接 回到详细版题目目录。