892. Zebra Circles

Consider a circle where 2n distinct points have been marked on its circumference.

A cutting C consists of connecting the 2n points with n line segments, so that no two line segments intersect, including on their end points. The n line segments then cut the circle into n+1 pieces. Each piece is painted either black or white, so that adjacent pieces are opposite colours. Let d(C) be the absolute difference between the numbers of black and white pieces under the cutting C.

Let D(n) be the sum of d(C) over all different cuttings C. For example, there are five different cuttings with n=3.

The upper three cuttings all have d=0 because there are two black and two white pieces; the lower two cuttings both have d=2 because there are three black and one white pieces. Therefore D(3)=0+0+0+2+2=4. You are also given D(100)1172122931(mod1234567891).

Find n=1107D(n). Give your answer modulo 1234567891.

892. 黑白交替的圆

我们在某圆周上任取 2n 个互不重合的点。我们将这些点用 n 条互不相交、且不共端点的线段相连,并称这是这个圆周的一个 切分

此时,圆周内部被这 n 条直线割成了 n+1 个部分。我们接下来将每个部分黑白染色,且在涂色的过程中保证相邻的部分颜色不同。我们记 d(C) 为:对于切分 C,黑色部分的数量和白色部分的数量之差的绝对值。再记 D(n) 为:对所有不同的切分 C,其 d(C) 之和。

例如 n=3 时,有 5 种不同的切分,如下图所示。图片上侧的三种切分法的 d 值为 0,下侧的两种切分法的 d 值为 2。所以 D(3)=4。已知:D(100)1172122931(mod1234567891)

n=1107D(n)1234567891 之值。


这个链接 回到源站。

这个链接 回到详细版题目目录。