A round clock only has three hands: hour, minute, second. All hands look identical and move continuously. Moreover, there is no number or reference mark so that the "upright position" is unknown. The clock functions the same as a normal 12-hour analogue clock.
Despite the inconvenient design, for most time it is possible to tell the correct time (within a 12-hour cycle) from the clock, just by measuring accurately the angles between the hands. For example, if all three hands coincide, then the time must be 12:00:00.
Nevertheless, there are several moments where the clock shows an ambiguous reading. For example, the following moment could be either 1:30:00 or 7:30:00 (with the clock rotated
Note that even if two hands perfectly coincide, we can still see them as two distinct hands in the same position. Thus for example 3:00:00 and 9:00:00 are not ambiguous moments.
How many ambiguous moments are there within a 12-hour cycle?
现有一个显时不明的时钟:它的时针、分针和秒针形状相同,难以分辨。表盘上也没有任何刻度,我们也无法得知其摆放的正面。除此之外,它和一个正常的 12 小时时钟完全一致。
虽然这种设计极不方便,但是大多数情况下,我们可以通过测量三根指针之间的夹角来确定时钟目前所指的时刻。例如,如果这时钟的三根指针完全重合,那这时钟所指的时刻只会是 12:00:00。(非整秒时刻不计)
但在某些情况下,我们确实无法完全确定其所指的时刻。例如,在下图所示的情况中,这个时钟所指的时刻可能是 1:30:00 或 7:30:00,因为你只需要将时钟旋转 180° 就能实现两个时刻间的转换。所以,我们称 1:30:00 和 7:30:00 均为 模糊时刻。
需要注意的是:我们认为重合在一起的指针是能够分辨的。因此,3:00:00 和 9:00:00 就不是模糊时刻。
请问在 12 个小时中,有多少个模糊时刻?
点 这个链接 回到源站。
点 这个链接 回到详细版题目目录。