861. Products of Bi-Unitary Divisors

A unitary divisor of a positive integer n is a divisor d of n such that gcd(d,nd)=1.

A bi-unitary divisor of n is a divisor d for which 1 is the only unitary divisor of d that is also a unitary divisor of nd.

For example, 2 is a bi-unitary divisor of 8, because the unitary divisors of 2 are {1,2}, and the unitary divisors of 8/2 are {1,4}, with 1 being the only unitary divisor in common.

The bi-unitary divisors of 240 are {1,2,3,5,6,8,10,15,16,24,30,40,48,80,120,240}.

Let P(n) be the product of all bi-unitary divisors of n. Define Qk(N) as the number of positive integers 1<nN such that P(n)=nk. For example, Q2(102)=51 and Q6(106)=6189.

Find k=210Qk(1012).

861. 双单元因数的乘积

若正整数 n 的某个因数 d 满足 gcd(d,nd)=1,则称 dn 的一个 单元因数

若正整数 n 的某个因数 d 满足:只有 1 既是 d 的单元因数、又是 nd 的单元因数,则称 dn 的一个 双单元因数

例如,n=8,d=2 时,2 的单元因数有 1,28/2 的单元因数有 1,4,二者共有的单元因数只有 1。所以 28 的一个双单元因数。

240 的双单元因数有 1,2,3,5,6,8,10,15,16,24,30,40,48,80,120,240

P(n)n 全体双单元因数的乘积,再记 Qk(n)1<nN 的正整数中,满足 P(n)=nk 的正整数的个数。已知:Q2(102)=51Q6(106)=6189

k=210Qk(1012)


这个链接 回到源站。

这个链接 回到详细版题目目录。