807. Loops of Ropes

Given a circle C and an integer n>1, we perform the following operations.

In step 0, we choose two uniformly random points R0 and B0 on C. In step i (1i<n), we first choose a uniformly random point Ri on C and connect the points Ri1 and Ri with a red rope; then choose a uniformly random point Bi on C and connect the points Bi1 and Bi with a blue rope. In step n, we first connect the points Rn1 and R0 with a red rope; then connect the points Bn1 and B0 with a blue rope. Each rope is straight between its two end points, and lies above all previous ropes.

After step n, we get a loop of red ropes, and a loop of blue ropes. Sometimes the two loops can be separated, as in the left figure below; sometimes they are "linked", hence cannot be separated, as in the middle and right figures below.

Let P(n) be the probability that the two loops can be separated. For example, P(3)=1120 and P(5)0.4304177690.

Find P(80), rounded to 10 digits after decimal point.

807. 绳环

给定圆 C 以及正整数 n>1,随后我们进行如下操作:

0 步时,我们在 C 上均匀随机地选出两个点 R0B0 i(1i<n) 步中,我们在 C 上均匀随机地选出一个点 Ri,然后用一根红色绳连接 Ri1Ri。随后,我们在 C 上均匀随机地选出一个点 Bi,然后用一根蓝色绳连接 Bi1Bi n 步时,我们将 Rn1R0 用一根红色绳连接,将 Bn1B0 用一根蓝色绳连接。 保证每根绳子均绷紧,并位于目前所有绳子的上方。

n 步后,我们会得到两个绳环,一个红色的、一个蓝色的。有时这两个绳环能被分开,如左图所示。而有时这两个绳环会互锁,无法分开,如中间与右边两图所示。

P(n) 为两个绳环能被分开的概率。 例如 P(3)=1120P(5)0.4304177690

P(80),将你的答案四舍五入至小数点后第 10 位。


这个链接 回到源站。

这个链接 回到详细版题目目录。