802. Iterated Composition

Let R2 be the set of pairs of real numbers (x,y). Let π=3.14159 .

Consider the function f from R2 to R2 defined by f(x,y)=(x2xy2,2xyy+π), and its n-th iterated composition f(n)(x,y)=f(f(f(x,y))). For example f(3)(x,y)=f(f(f(x,y))). A pair (x,y) is said to have period n if n is the smallest positive integer such that f(n)(x,y)=(x,y).

Let P(n) denote the sum of x-coordinates of all points having period not exceeding n. Interestingly, P(n) is always an integer. For example, P(1)=2, P(2)=2, P(3)=4.

Find P(107) and give your answer modulo 1020340567.

802. 迭代复合

R2 为所有实数二元组的集合。取 π=3.14159 

考虑一个函数 f:R2R2,其对应法则为 f(x,y)=(x2xy2,2xyy+π)。记此函数的 n 次复合为 f(n)(x,y)=f(f(f(x,y))),例如 f(3)(x,y)=f(f(f(x,y)))。如果某二元组 (x,y) 满足 f(n)(x,y)=(x,y),则记满足此等式的最小正整数 n 为该二元组的周期。

P(n) 为:所有周期不超过 n 的二元组的第一维元素的和。有意思的是,P(n) 一直是整数。已知:P(1)=2P(2)=2P(3)=4

P(107)1020340567 之值。


这个链接 回到源站。

这个链接 回到详细版题目目录。