787. Bézout's Game

Two players play a game with two piles of stones. They take alternating turns. If there are currently a stones in the first pile and b stones in the second, a turn consists of removing c0 stones from the first pile and d0 from the second in such a way that adbc=±1. The winner is the player who first empties one of the piles.

Note that the game is only playable if the sizes of the two piles are coprime.

A game state (a,b) is a winning position if the next player can guarantee a win with optimal play. Define H(N) to be the number of winning positions (a,b) with gcd(a,b)=1, a>0, b>0 and a+bN. Note the order matters, so for example (2,1) and (1,2) are distinct positions.

You are given H(4)=5 and H(100)=2043.

Find H(109).

787. 裴蜀游戏

现有两名玩家用两堆石子玩一个游戏。二人轮流进行操作。
若某时刻第一堆里有 a 枚石子,第二堆里有 b 枚石子。则某名玩家在操作时,可以从第一堆里拿走 c 枚石子,从第二堆里拿走 d 枚石子,且满足:c0d0adbc=±1。如果某玩家操作完毕后,取尽了某一堆石子,则该玩家获胜。

不难发现,只有当 a,b 互质时,这个游戏才能玩。

若某个状态 (a,b) 满足下一位玩家能在最优操作下保证获胜,则我们称这个状态为必胜态。再记 H(N) 为满足 gcd(a,b)=1a>0b>0a+bN 的必胜态 (a,b) 的个数。注意,本题考虑顺序问题。比如说,(2,1)(1,2) 在计算时,应被认为是两个不同的状态。已知 H(4)=5H(100)=2043

H(109)


这个链接 回到源站。

这个链接 回到详细版题目目录。