768. Chandelier

A certain type of chandelier contains a circular ring of n evenly spaced candleholders.
If only one candle is fitted, then the chandelier will be imbalanced. However, if a second identical candle is placed in the opposite candleholder (assuming n is even) then perfect balance will be achieved and the chandelier will hang level.

Let f(n,m) be the number of ways of arranging m identical candles in distinct sockets of a chandelier with n candleholders such that the chandelier is perfectly balanced.

For example, f(4,2)=2: assuming the chandelier's four candleholders are aligned with the compass points, the two valid arrangements are "North & South" and "East & West". Note that these are considered to be different arrangements even though they are related by rotation.

You are given that f(12,4)=15 and f(36,6)=876.

Find f(360,20).

768. 吊灯1

某枝形吊灯上均匀分布了 n 盏烛台。如果只放置 1 根蜡烛,这吊灯必定受力不平衡;但是 n 为偶数时,只要把 2 根蜡烛分别放在两个在环状吊灯上相对的烛台中时,吊灯就受力平衡了。

f(n,m) 为在某含有 n 盏烛台的环形吊灯中放置 m 根完全一样的蜡烛,且能使吊灯受力平衡的方案数。

例如 f(4,2) 为 2:将吊灯的 4 盏烛台与指南针的 4 个方向对齐,那么这两根蜡烛可以放在代表南、北,或者代表东、西的烛台中。虽然这两种摆放方式在旋转后是一致的,但在本题中我们认为这两种方案是不同的。

已知 f(12,4)=15f(36,6)=876

f(360,20)


这个链接 回到源站。

这个链接 回到详细版题目目录。


1 chandelier: a branched often ornate lighting fixture suspended from a ceiling。韦氏词典对此给出了配图,可前往链接查看。