764. Asymmetric Diophantine Equation

Consider the following Diophantine equation:

16x2+y4=z2

where x, y and z are positive integers.

Let S(N)=(x+y+z) where the sum is over all solutions (x,y,z) such that 1x,y,zN and gcd(x,y,z)=1.

For N=100, there are only two such solutions: (3,4,20) and (10,3,41). So S(102)=81.

You are also given that S(104)=112851 (with 26 solutions), and S(107)248876211(mod109).

Find S(1016). Give your answer modulo 109.

764. 不对称丢番图方程

考察如下丢番图方程,其中 xyz 均是正整数:

16x2+y4=z2

S(N)=(x+y+z),其中 (x,y,z) 取遍上述方程所有满足 1x,y,zNgcd(x,y,z)=1 的解。

N=100 时,只有两组解满足要求:(3,4,20)(10,3,41),于是 S(102)=81

你还已知 S(104)=112851(有 26 组符合要求的解)且 S(107)248876211(mod109)

S(1016)109 的值。


这个链接 回到源站。

这个链接 回到详细版题目目录。