762. Amoebas in a 2D Grid

Consider a two dimensional grid of squares. The grid has 4 rows but infinitely many columns. An amoeba in square (x,y) can divide itself into two amoebas to occupy the squares (x+1,y) and (x+1,(y+1)mod4), provided these squares are empty.

The following diagrams show two cases of an amoeba placed in square A of each grid. When it divides, it is replaced with two amoebas, one at each of the squares marked with B:

Originally there is only one amoeba in the square (0,0). After N divisions there will be N+1 amoebas arranged in the grid. An arrangement may be reached in several different ways but it is only counted once. Let C(N) be the number of different possible arrangements after N divisions.

For example, C(2)=2, C(10)=1301, C(20)=5895236 and the last nine digits of C(100) are 125923036.

Find C(100000), enter the last nine digits as your answer.

762. 二维网格上的变形虫

考虑一个二维的,由四行、无数列方格排成的网格。如果 (x+1,y)(x+1,(y+1)mod4) 这两个位置上都没有变形虫,那么位于 (x,y) 的变形虫可以将自身分裂为两只变形虫,分别占据这两个格子。

如下两张图展示了变形虫分裂的过程:初始时,A 方格上有一只变形虫,其分裂后产生的两只新变形虫位于标有 B 的两个方格上。

初始时,仅有 (0,0) 一格上有一只变形虫。在 N 次分裂之后,网格上会有 N+1 只变形虫。当然,可能会有多种安排变形虫分裂的方式,它们最终得到的变形虫的排布完全相同,但此处,相同的排布方式我们只计一次。记 C(N) 为:在 N 次分裂之后,不同的变形虫排布方案数。

已知 C(2)=2C(10)=1301C(20)=5895236C(100) 的末九位数是 125923036

C(100000),将其末九位数作为你的答案。


这个链接 回到源站。

这个链接 回到详细版题目目录。