fsy's blog

燃峥嵘岁月,烈日终破云。

洛谷P4358 [CQOI2016]密钥破解

题目传送门

给定 $e, N, c$,满足 $N = pq$,其中 $p, q$ 为质数。记 $r = (p-1)(q-1)$,求 $d, n$ 使得 $ed \equiv 1 \pmod r$,$c^d \equiv n \pmod N$。

题解

首先,我们对 $N$ 进行质因数分解,分解出 $p$ 和 $q$ 。然后计算 $r = (p - 1) (q - 1)$

然后,我们可以用 exgcd 求出 $d$。

最后快速幂求出 $c^d \mod N$

由于 $N$ 很大,直接试除法会 T,所以要用 Pollard-rho 算法。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#define LL long long
#define rep(i, x, y) for (int i = x; i <= y; i++)

const int prime_list[12] = { 2, 3, 5, 7, 11, 13, (LL) 1e9 + 7 };
const int small_prime[6] = { 2, 3, 5, 7, 11 };
const int luck_prime = 19260817;

template <typename T>
inline void read(T &x) {
x = 0;
LL f = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) {
if (c == '-')
f = -f;
}
for (; isdigit(c); c = getchar()) {
x = x * 10 + c - 48;
}
x *= f;
}

LL ksc(LL a, LL b, LL m) {
LL d = ((long double)a / m * b + 1e-8);
LL r = a * b - d * m;
return r < 0 ? r + m : r;
}

LL ksm(LL a, LL b, LL p) {
LL sum = 1;
for (; b >= 1; b >>= 1, a = ksc(a, a, p)) {
if (b & 1)
sum = ksc(sum, a, p);
}
return sum;
}

LL gcd(LL a, LL b) {
if (!a) return b;
if (!b) return a;
#define ctz __builtin_ctzll
int t = ctz(a | b);
a >>= ctz(a);
do {
b >>= ctz(b);
if (a > b) {
LL t = b;
b = a;
a = t;
}
b -= a;
} while (b != 0);
return a << t;
}

bool miller_rabin(LL x) {
if (x < 2)
return false;
if (x == 2 || x == 3 || x == 5 || x == 7)
return true;
if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0)
return false;
LL cnt = 0, rem = x - 1;
while (!(rem & 1)) {
cnt++;
rem >>= 1;
}

rep(i, 0, 6) {
if(x == prime_list[i]) return true;
if(x % prime_list[i] == 0) return false;
LL rt = ksm(prime_list[i], rem, x);
LL y = rt;
rep(i, 1, cnt) {
rt = ksc(rt, rt, x);
if (rt == 1 && y != 1 && y != x - 1) {
return false;
}
y = rt;
}
if (rt != 1)
return false;
}
return true;
}

int M = (1 << 7) - 1;
LL f(LL x, LL p, LL c) {
LL ans = ksc(x, x, p) + c;
return ans < p ? ans : ans - p;
}
LL abs(LL x) {
return x < 0? -x : x;
}
LL pollards_rho(LL x) {
if (x % 2 == 0)
return 2;
if (x % 3 == 0)
return 3;
if (x % 5 == 0)
return 5;
if (x % 7 == 0)
return 7;
LL base = 1ll * rand() % (x - 1) + 1;
LL sp = 0, tp = 0;
int i = 1, j = 0;
LL val = 1;
LL d;
for(i = 1; ; i <<= 1, sp = tp, val = 1) {
for(j = 1; j <= i; ++j) {
tp = f(tp, x, base);
val = ksc(val, abs(tp - sp) , x);
if(!(j & M)) {
d = gcd(val, x);
if(d > 1) return d;
}
}
d = gcd(val, x);
if(d > 1) return d;
}
}

LL factor[5], m = 0;
void work(LL x) {
if(x <= 1) return;
if(miller_rabin(x)) {
factor[++m] = x;
return;
}
LL num = x;
while(num >= x) {
num = pollards_rho(x);
}
while(x % num == 0) {x /= num;}
if(x >= 2) work(x);
if(num >= 2) work(num);
}

LL exgcd(LL a, LL b, LL &x, LL &y) {
if(b == 0) {x = 1; y = 0; return a;}
LL d = exgcd(b, a%b, x, y);
LL z = x;
x = y;
y = z - y * (a / b);
return d;
}

LL inv(LL a, LL p) {
LL x, y;
LL d = exgcd(a, p, x, y);
return d == 1? (x + p) % p : -1;
}

int main() {
srand((unsigned)time(0));
LL e, N, c;
read(e); read(N); read(c);

work(N);
std::sort(factor + 1, factor + m + 1);

LL r = (factor[1] - 1) * (factor[2] - 1);
LL d = inv(e, r);

printf("%lld %lld\n", d, ksm(c, d, N));
return 0;
}